Ear Formation Issues in Corn, an Update

Osler Ortez

PhD. Student in Agronomy

Justin McMechan Crop Protection and Cropping Systems

> **Tom Hoegemeyer Adjunct Professor of Practice**

> **Roger Elmore** Extension Cropping Systems

2020 Wilber Crop Clinic Friday, February 7

NSION

GRONOMY AND HORTICULTURE

College of Agricultural Sciences and Natural Resources

Reports of ear issues in Aug. 2016

Initially thought it was isolated to **Nebraska**

Corn Ear Formation Issues Likely Correlated With the Loss of the Primary Ear Node

AUGUST 19, 2016

Roger Elmore - Extension Cropping Systems Agronomist | Jenny Rees - Extension Educator | Justin McMechan - Crop Protection and Cropping Systems Specialist | Tamra Jackson-Ziems, Extension Plant Pathologist | Tom Hoegemeyer - Adjunct Professor of Practice 🛩 Tweet 🛛 📼 Email

As of last Sunday, August 14, 76% of Nebraska's corn was rated in good to excellent condition, according to <u>USDA-NASS</u> and <u>crop development</u> was outpacing last year and the previous five-year average. In most cases corn yield forecasts for Nebraska (<u>Aug. 10 UNL Forecasts</u> and <u>Aug. 12 USDA-NASS forecast</u>) and the U.S. are somewhat encouraging. However, critical seedfill stages remain and as the old saying goes, "The proof in the pudding is in the eating!" Cool

Figure 1. "Normal" length ears with short husks most likely on the

Reports of ear issues in Aug. 2016

Initially thought it was isolated to Nebraska

Well-substantiated reports from:

Texas Panhandle Eastern Colorado Iowa Illinois

Issue Reports in 2016

Introduction

Ear formation issues as result of interactions among G x E x M:

genetics (G)

environment (E)

management practices (M)

... but specific causes are still to be found!

Normal Ears

Short Husks

70% short

80% short

90% short

Barbell-1: base

Barbell-2: middle

Barbell-3: tip

Multi-Ears

Three ears

Four ears

Seven ears

To study causal agents of ear formation issues and productivity losses in corn

Corn Growth & Development

Field Surveys, **2016-2017**

Ear Issues: 2016 and 2017

- •50-100 plants/location
- •Up to 60% issues for some fields

Field Surveys, 2016-2017

Summary

Ear height and average ear node were lower for ear issues

Significant yield impact under ear issues

Research Questions

2016-2017: **Primary ear loss?** •Sheath constriction? Internode length?

- 2018-2019:
- Solar radiation limitation

- •Primary ear loss? •Sheath constriction? Internode length? •Hybrid specific? Heat/drought/wind stress? •Ethylene concentration? Seeding rates? •Planting dates? Delayed emergence? •Ear placement/height?

UNL Farms (3): HAVELOCK, Lincoln SCAL, Clay Center ENREC, Mead

Eight Hybrids

Company Farms (4): Lawrence Hooper Filley York

Four Planting Dates

Five Seeding Rates

Seven Hourly Plantings

South Central Agricultural Lab, Clay Center, NE Eastern Nebraska Research & Extension, Mead, NE

Planting Dates (4): **Mid/Late April Early May** Mid May Late May

Hybrids (6): Three Susceptible (racehorses) = yield varies **Three Checks (workhorses) = stable yields**

Lawrence, NE Hooper, NE Filley, NE York, NE

Seeding rates (5): 18,000 seeds/Ac⁻¹ 26,000 seeds/Ac⁻¹ 34,000 seeds/Ac⁻¹ 42,000 seeds/Ac⁻¹ 50,000 seeds/Ac⁻¹

Hybrids (8): Four Susceptible (racehorse) Four Checks (workhorse)

Data Collection, 2018-2019

Ear Issues Assessment

1,440 plots total

62,640 linear feet

~110,600 assesed plants

#	Location:	Stage:	Date:	PD	Plot	Row	Location (ft)	Reference	Ear Type	Ear Height (inch)	Addittional Notes
1	ENREC	R5	8/6/2018	1	101	3	5.2	1 aft 15	SH5	45	Overall 45 inch ear height; commom 5% SH
2	ENREC	R5	8/6/2018	1	101	3	6.1	2 aft 15	SH10	39	Overall 45 inch ear height; commom 5% SH
3	ENREC	R5	8/6/2018	1	101	3	7.2	2 aft 24	SH5	45	Overall 45 inch ear height; commom 5% SH
4	ENREC	R5	8/6/2018	1	101	3	9.5	4 aft 0	SH10	40	Overall 45 inch ear height; commom 5% SH
5	ENREC	R5	8/6/2018	1	101	3	10.7	3 aft 9	SH15/ME2	42	Overall 45 inch ear height; commom 5% SH
6	ENREC	R5	8/6/2018	1	101	3	13.1	3 aft 12	SE	26	Overall 45 inch ear height; commom 5% SH
7	ENREC	R5	8/6/2018	1	101	3	14.8	5 aft 12	SH15/ME2	41	Overall 45 inch ear height; commom 5% SH
8	ENREC	R5	8/6/2018	1	101	3	15.3	1 aft 15	SH15/ME2	39	Overall 45 inch ear height; commom 5% SH
9	ENREC	R5	8/6/2018	1	101	3	15.7	2 aft 15	SH15/ME2	49	Overall 45 inch ear height; commom 5% SH
10	ENREC	R5	8/6/2018	1	101	3	17.6	1 bef 18	SH15	43	Overall 45 inch ear height; commom 5% SH
11	ENREC	R5	8/6/2018	1	101	3	18.6	2 aft 18	SE	47	Overall 45 inch ear height; commom 5% SH
12	ENREC	R5	8/6/2018	1	101	3	23.2	5 aft 21	ME2/SH5	42	Overall 45 inch ear height; commom 5% SH
13	ENREC	R5	8/6/2018	1	101	3	23.6	1 bef 24	SE	43	Overall 45 inch ear height; commom 5% SH
14	ENREC	R5	8/6/2018	1	101	3	25.1	3 aft 24	SH10	43	Overall 45 inch ear height; commom 5% SH
15	ENREC	R5	8/6/2018	1	101	3	26.2	5 aft 24	SE	43	Overall 45 inch ear height; commom 5% SH
16	ENREC	R5	8/6/2018	1	101	3	28.6	4 aft 27	SE	44	Overall 45 inch ear height; commom 5% SH

Results, 2018-2019

About 7% of ear issues documented across fields

- About 12% of ear • issues documented across fields
 - Comparable • for UNL Farms
 - More for Company Farms

Results, 2018-2019

 Short husks accounted for **54%** of the issues Number of Issues

Short husks accounted for 69% of the issues

Barbell Ears observed in 2019

Multi Ears increased by about 73%

Number of Issues

To be added,

Hybrid-influenced results

Hybrids (8): Four Susceptible (racehorse = yield varies)

Four Checks (workhorse = stable yields)

2018

, results

2019

Results, 2018-2019

No major influence due to planting dates, similar number of issues among all

Number of Issues

No major influence due to planting dates, similar number of issues across

Planting Date

More ear issues under higher seeding rates (for both, absolute and relative terms)

- More ear issues under higher seeding rates
 - More ear issues in 2019 as compared to 2018

Havelock, Lincoln, NE

Delayed Hand-Planting (6): 0-hour (control) 6-hours after 12-hours after 24-hours after 48-hours after 96-hours after 270-hours after

Hybrids (2): Susceptible (racehorse) Checks (workhorse)

Field Emergence Variability? soil moist, soil temp, seed depth, insect feeding, soil crusting, herbicide injury

Results, 2019

YIELDS

 Later plantings resulted in lower yields Susceptible hybrid resulted in lower yields

EAR ISSUES

Not much trendSusceptible hybriddue toresulted inplanting timesmore issues (20X)

Summary, 2018-2019

Ear issues decreased grain yield (field surveys 2016 & 2017)

Ear issues found across sites & conditions 2018 & 2019:

- More issues in 2019 (12% vs. 7%)
- Short-husks led the count (54% & 69%)
- No major effect due to planting dates
- More issues at higher seeding rates and susceptible hybrids

Delayed planting study reduced yield and **showed ear issues**

Repeating field experiments and adding greenhouse trial in 2020

Take-Home Message

"We can think that 70+ years of basic understanding of corn, it would be understood completely...

...Not true!!! Ear issues affronted in 2016 still plague some farmers, reducing productivity and causing us to continue pondering the causes"

Abnormal Corn Ears

Thank you **Questions?**

TENSION

Help us by reporting ear issues

Osler Ortez Ph.D. Student, Agronomy osler.ortez@huskers.unl.edu Phone: (785) 370-9369

Institute of Agriculture and Natural Resources **DEPARTMENT OF ENTOMOLOGY**

Justin McMechan Crop Protection and Crop Systems justin.mcmechan@unl.edu Phone: (402) 624-8041

Nebraska, 2019: Non-Ionic Surfactant

Research suggests to avoid use of NIS spray additives with foliar applications during growth stages V10 to VT

Staging is strictly **important**:

- * Dig/split plants inside field
- Count nodes (last collared leaf)
- Sector Sector

Nebraska, 2019: Non-Ionic Surfactant

Research suggests to avoid use of NIS spray additives with foliar applications during growth stages **V10 to VT**

Staging is strictly **important**:

- Dig/split plants inside field
- Count nodes (last collared leaf)
- Ensure application is on label

What Growth Stage is this plant?

Is this a safe stage to add NIS?

Answer: Yes.

***I stopped counting nodes at last collared/fully developed leaf

Nebraska, 2019: Non-Ionic Surfactant

Research suggests to avoid use of NIS spray additives with foliar applications during growth stages **V10 to VT**

Staging is strictly **important**:

- Dig/split plants inside field
- Count nodes (last collared leaf)
- Ensure application is on label

What Growth Stage is this plant?

Is this a safe stage to add NIS?

Answer: Yes.

***I stopped counting nodes at last collared/fully developed leaf