Spray Technologies

And common practices to accomplish a successful spray application

Sam Marx Wilber Crop Clinic Feb 7, 2020

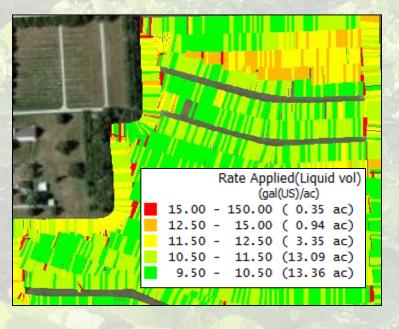
Goals For A Good Spray Application

What is a good spray application?

- Getting the correct amount of the correct active ingredient to it's target
 - Mitigating over/under application
 - Uniform coverage across the entire area
 - Reduce potential for off target movement (drift)

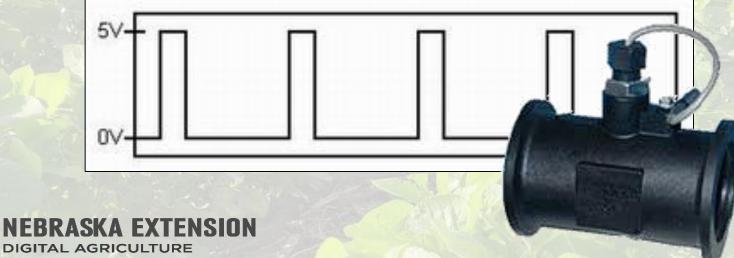
Goals for a good spray application

- On target and accurate:
 - Application Rate (Correct rate for the application)
 - Mixing (Pre-Mixing, Agitation, Direct Injection)
 - Flow (Clean Booms)


DIGITAL

- Pattern (Correct Nozzle Spray Angle/Nozzle Overlap)
- Droplet Spectra (Correct Nozzle Size/Spray Pressure for mitigating drift while maintaining efficacy)

- Application Rate
 - Correct rate for the application
 - Can be affected by many factors including:
 - Proper mixing
 - Correct Nozzles
 - Properly setup rate controller



- Application rate
 - Rate Controller functionality/calibration

• Flow

- Properly calibrated flow meter
 - Cal Number (pulses/gal or pulses 10 gal)
- Clean system
 - Strainer
 - Booms
 - Nozzles

- Mixing
 - Correct mixing of:
 - Adjuvants and the order they're mixed
 - Active ingredient to carrier ratio
 - Including premixed and direct injected
 - Agitation within the solution tank before and during the application

- Pattern
 - Correct nozzle spray angle for:
 - Nozzle spray angle
 - Nozzle spacing
 - Boom height

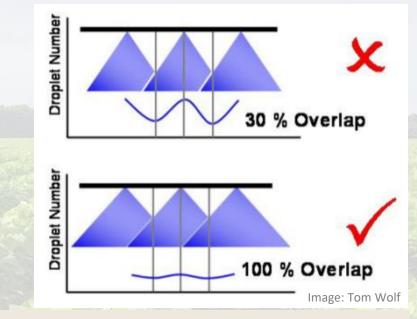


Image: Wilger

Minimum Spray Tip Height

SINN

Tip Spacing	Minimum Spray Tip Height			
	ER, SR, MR & DR 80 Degree Tips	ER Series 110 Degree Tips	SR, MR & DR Series 110 Degree Tips	Tip Spacing
10	10"	9 "	13"	T Spray Tip
20	17"	15"	19"	Height
30	26"	20"	24"	

- Droplet Spectra
 - Designated by class for nozzles
 - Correct nozzle and pressure
 - Efficacy vs drift potential

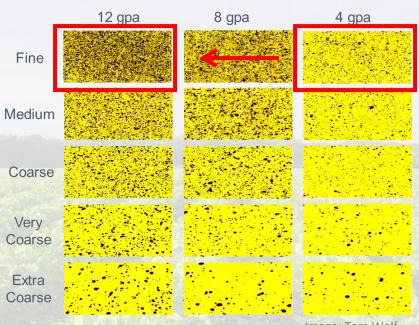
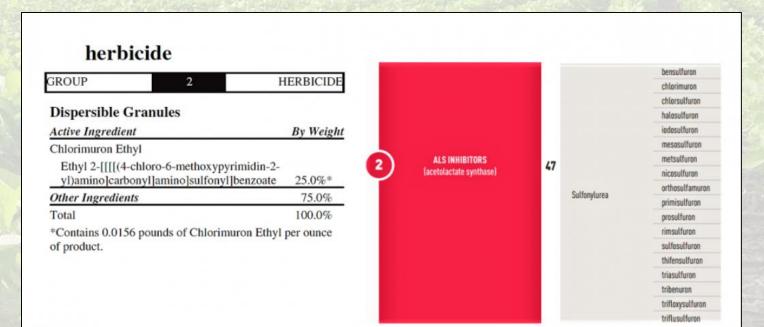


Image: Tom Wolf


- Cleaning
 - More than cleaning the outside of the sprayer
 - <u>https://cropwatch.unl.edu/2018/think-your-sprayers-clean-think-again</u>
 - <u>https://cropwatch.unl.edu/2018/removing-dicamba-residues-your-sprayer-tricky-task</u>

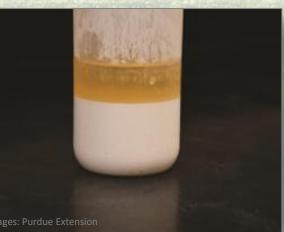
EXTENSION

- Label Understanding
 - Know what's inside your tank
 - <u>https://cropwatch.unl.edu/2018/what-should-you-look-herbicide-label</u>

EXTENSION

Current Issues That Can Prevent a Good Spray Application

Current Issues That Can Prevent a Good Spray Application


- Proper Batching
- Label Rates vs. Applied Rates
 - Improper mixing
 - Poor chemical Flow/Non-Uniform Boom Flow Velocities
 - Nozzle wear
 - Overlap
 - Turn
 - Drift

Proper Batching

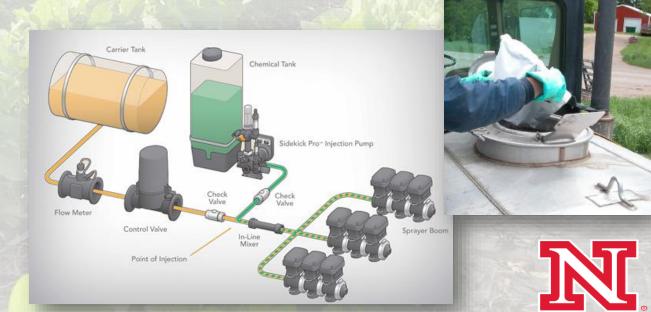
• Are the correct adjuvants/adjuvant rates being used?

Some chemicals and adjuvants won't mix

Water hardness can affect the chemical saturation

Proper Batching

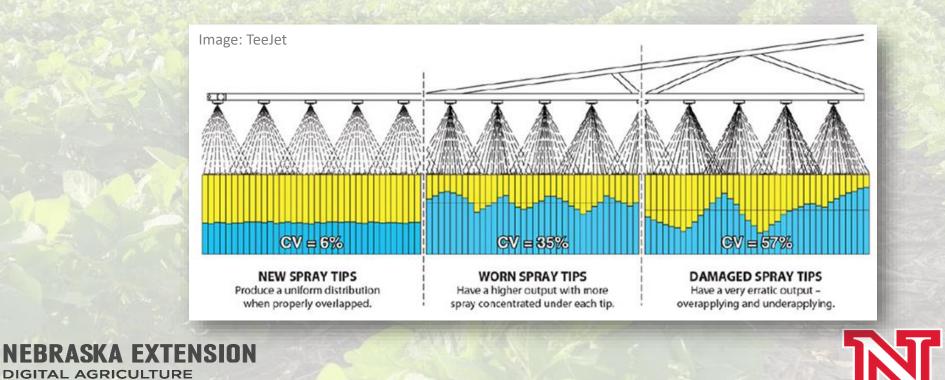
- Chemical/Carrier Dilution
 - Is the correct amount of carrier being used?
 - If the dilution is incorrect, non-uniformity (streaking/spotting) is very possible
 - This may be critical with direct injection systems



Proper Batching

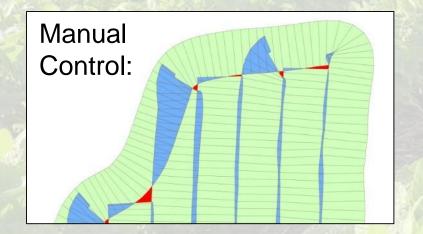
- Direct Injection Systems
 - DI systems allow for separate storage and metering of chemical into the carrier stream
 - Operator exposure and cleanout procedures are improved
 - Response (lag) times and mixing have been issues since they were initially developed

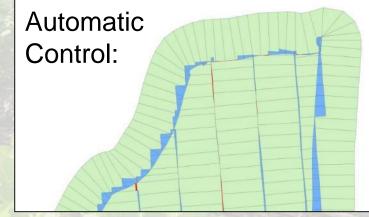
- Improper mixing
 - Incorrect mixing of carrier, active and adjuvants



- Poor chemical Flow/Non-Uniform Boom Flow Velocities
 - Plugged strainer
 - You should check your strainer more than once or twice per season
 - Sediment buildup in booms
 - Frequent boom flushing keeps boom flow rates/velocities at designed operating parameters
 - The use of a cleaner may be needed occasionally (i.e. CLR)

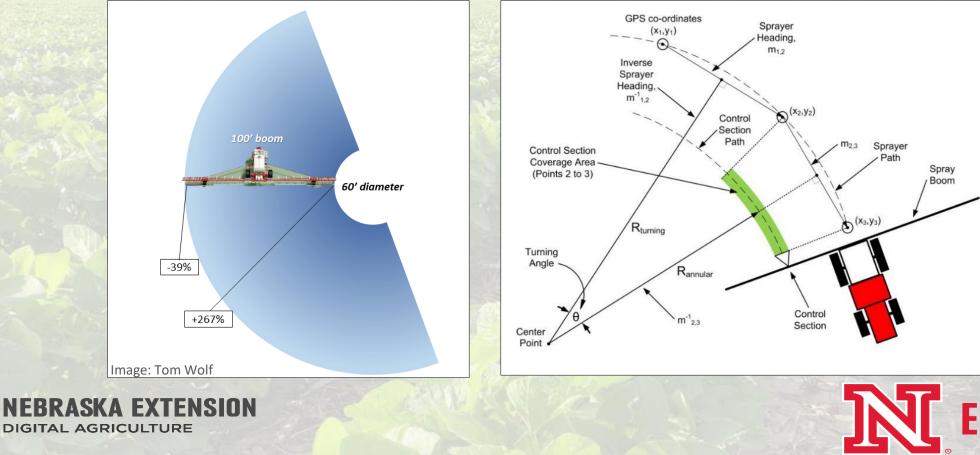
- Nozzle wear
 - Worn nozzles, wrong strainer, improper flushing
 - Nozzles may look fine and even produce a good pattern, however the variability may be greatly increased with worn or damaged spray nozzles.

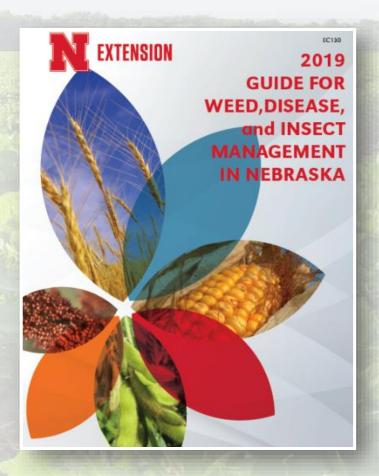

• Drift


- Incorrect nozzle or spray pressure for the application
- Weather Impacts on Drift
 - Wind
 - Temperature Inversions
- <u>https://cropwatch.unl.edu/2016/improving-pesticide-efficacy-and-managing-spray-drift</u>

Overlap

- No section control or non-uniform section control
- Boom setup and field shape/size can have an impact on payback




• Turning

- Outside nozzles faster than inside nozzles during turns
 - The wider the boom, the greater the effect

A Valuable Resource

<u>https://marketplace.unl.edu/extension/extpubs/ec130.html</u>

- Automated mixing
 - Meter and mix the right chemical for the job
 - Automated record keeping
 - Potentially helps reduce user errors
 - SureFire Ag: QuickDraw
 - PraxiDyne[®]: Mixmate
 - DuPont[™]: PrecisionPac[®]

- Spray Nozzle Technology
 - Air Induction/Pre-Orifice Nozzles
 - Aid in reducing drift-able fines by entrapping air and/or slowing down the velocity of the spray exiting the final orifice
 - Wilger: Combo-Jet[®] MR, DR and UR Series
 - TeeJet[®]: TTI, Air Induction, XR,XRC, DG, AI3070
 - Hypro[®]: 3D Nozzle, Guardian, Guardian Air, Ultra Low-Drift
 - GreenLeaf: Softdrop, Low Drift Dual Fan for PWM, TurboDrop[®]

- Spray Nozzle Technology
 - Variable Orifice Nozzles
 - Change flow/pressure rates while maintaining droplet spectra and pattern

Variable Rate (TDVR)

VanTan

DELA

- GreenLeaf: Turbo
- Delevan: VariTa

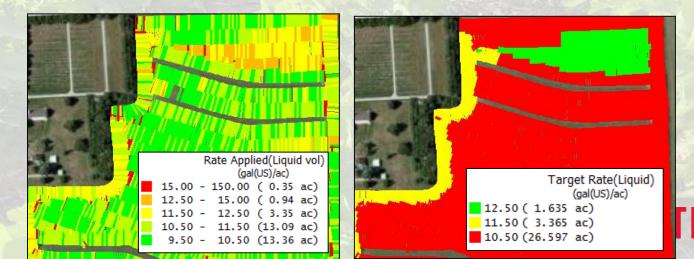
- PWM Control
 - Maintains pressure (and droplet spectra) while accommodating flow changes through speed changes
 - Individual nozzle control allows for the duty cycle to vary across the boom to maintain target rate during turns
 - Some commercially available products offer individual nozzle overlap shutoff
 - CapstanAG [™] : SharpShooter RS[®], EVO[™], Pin Point[®] II
 - Raven: Hawkeye[®]
 - John Deere[™]: ExactApply[™]
 - TeeJet[®]: DynaJet[®] Flex
 - <u>https://cropwatch.unl.edu/2018/precise-spray-droplet-sizes-optimizing-herbicide-applications</u>

- Boom height Control
- Maintaining proper boom-to-target height is critical and can affect:
 - Application uniformity (low clearance)
 - Off-target movement of spray particles (excessive clearance)
- Mechanical and non-contact sensors are available
- Sensors control boom hydraulics to maintain height
 - NORAC[®]: Boom Height Control[™]
 - Raven: AutoBoom®XRT
 - Bestway: AutoGlideXR™

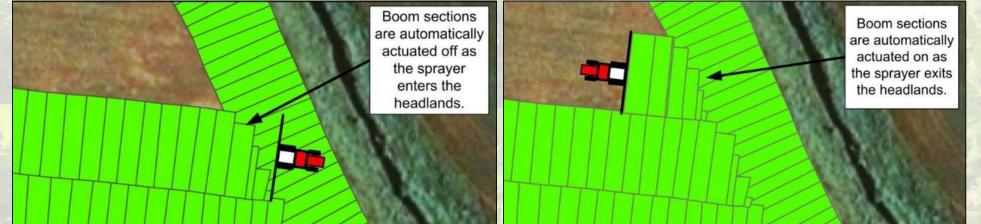
- Weed Sensing Technologies
- Reflectance-based systems work much like crop canopy sensors for detecting weeds
- Digital algorithms assess the presence of weeds and nozzle valves are actuated "on" or "off"
- Challenges to adoption continue to focus on Economics
- Payback depends on weed density in fields and acres in production
- Potential to greatly reduce chemical usage
 - Trimble[®]: WeedSeeker[®]
 - Blue River Technologies: See & Spray[™]

Weather Monitoring

• For in field weather monitoring and planning, there are tools available


- Spoton[®]: Inversion Tester
- John Deere[™]: Mobile Weather[™]
- Kestral[®]: 5500AG
- BASF: Engenia[®] Spray Tool (online resource)
 - https://www.engeniaspraytool.com

- Digital Mapping
 - Digital record of application location and "As Applied" map
 - Can be used for record keeping
 - Can be used to verify target rate vs applied rate
 - For both single rate and prescription rates
 - Comparisons with as-applied data will allow us to determine where improvements can be made in our operations



- Automated Steering
 - Available on most self propelled sprayers
 - Integrated or steering wheel adapted
 - Reduces operator fatigue
 - Reduces potential for overlap/skips

- Map Based Section/Individual Nozzle Control
 - Automatic Section Control (ASC) is a technology that has reduced pesticide over-application
 - Reduces overlap by turning sections or individual nozzles off on previously covered area
 - ASC is an easy addition to most sprayers and takes little time to realize benefits

Questions

