Crop Availability of Nutrients

- Manure contains many of the nutrients needed for crop production
 - Nutrients are distributed in two forms:
 - Inorganic component Predominantly ammonium (NH4) and generally readily available for immediate crop usage
 - Organic component Consists of feed particles (ie. soybean meal, corn, and complex organic acids). Must be mineralized prior to crop availability

Mineralization of N is accomplished by microorganisms in the soil

- Rate of mineralization depends on soil temp, moisture, and other environmental considerations. Remember this is a biological process.
- Rate of mineralization very difficult to accurately predict, generally around 1 to 5% per year of soil mineralization.
- 2,000,000 # in 6" soil * 1% Organic Matter = 20,000 of soil organic matter * 5% = 1,000 pounds of nitrogen. If 2% can be mineralized in the soil = 20 lbs of nitrogen from organic matter added by soil.
- Manure adds additional organic matter.

Agronomic Benefits of Manure

- Increased Cation Exchange Capacity (Soil)
- Lower Bulk Density (Soil)
 - Increased water and air penetration
 - Reduced compaction
 - Reduced crusting
- Builds soil Organic Matter
 - Improves tilth/ soil structure
- Economics
 - Can replace part or all of commercial fertilizer needs.

Value of Manure

- Commercial Fertilizer Assumptions: NH3: \$660/ton or \$0.40/lb N MAP: \$599/ton or \$0.49/lb P2O5 Potash: \$503/ton or \$0.42/lb K2O
- Swine Nutrient Value (per 1,000 gallons): N (NH4 and Organic N): 37.90 # available 1st year N values P2O5: 14.9 # K2O: 19.9 #

- Swine Manure Fertilizer Value (per 1,000 gallons): N: \$15.16
 P2O5: \$7.30
 K2O: \$8.36
 Swine Manure provided: \$30.82 per 1,000 gallons of nutrient value!
- Values above are based on one operation as example. Each operation will have different nutrient value of nitrogen which impacts potential application recommendations and value of manure.

Value of Manure

2400 hogs
1.2 gal /day
350 days/year
420 gal./hog/year
1,008,000 Gallons/yr.

Manure Test			
	N	P	K
Average test, Ib./1000 gal	37.9	14.9	19.9
% available	100%	100%	100%
Lbs. available/1000 gal.	37.9	14.9	19.9
Lbs. available/acre	161	63	85

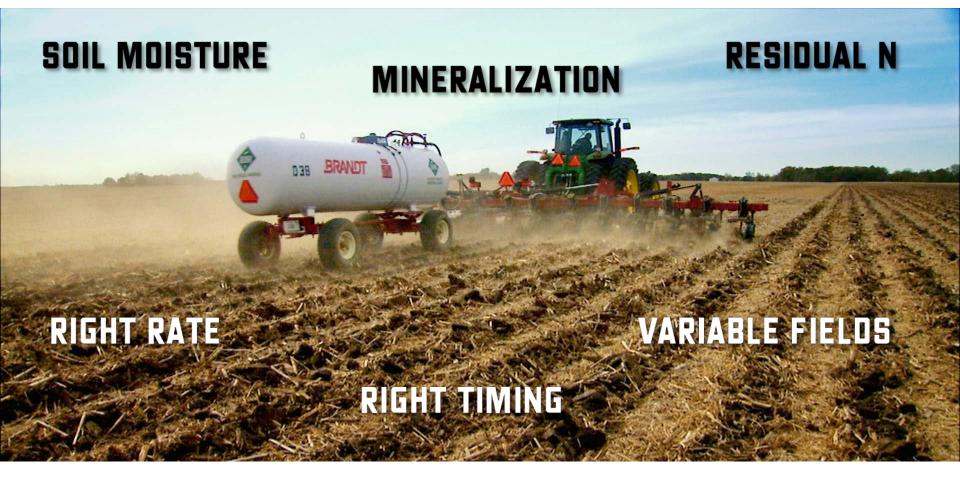
DNR Manure Plan Maximum Application Rates*						
5 year county avg. corn yield	158.4 bu./acre					
plus 10%	174.24 bu./acre					
N multiplier for area	1 lbs./bu.					
Corn nitrogen need	174.2 lbs./acre					
less legume credit	0 lbs./acre					
Maximum acceptable N rate	174.2 lbs./acre					
Nitrogen availability/1000 gal.	37.9 lbs.					
Maximum application rate	4,597 gal./acre					
*See DNR Annendix A: http://www.ik	owador.cov/Portals/idor/uploads/forms/542400(

Manure Cost				
Application cost	\$ 0.0110	\$/gallon	Man	ure
Manure cost	\$ -	\$/gallon	Cost	/ Acre
Total cost	\$ 0.0110	\$/gallon		
Planned application rate	4250	gal./acre		
Acres required	237	Acres		
Total application cost/year	\$ 11,088		\$	46.75

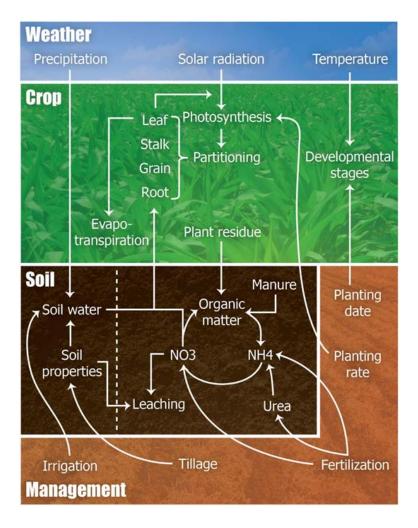
Component Value of Manure	1				
		N	P	K	Fertilizer
Manure availability, Ibs./1000 gal		37.9	14.9	19.9	Value / Acre
Commercial fert. cost \$/lb.	\$	0.40	\$ 0.49	\$ 0.42	
Value, \$/1000 gal.	\$	15.16	\$ 7.30	\$ 8.36	
_				\$ 30.82	\$ 130.98

Total / Ad	
TOTAL / AL	cre
]	
\$ 1	30.15
8	- 1

- Based on 4,250 gallons / acre:
 - Manure value \$130.98 based on commercial fertilizer prices
 - Manure minus application: \$130.98-\$46.75
 = \$84.23/acre net value of manure to grower
- Supplying 160-63-85 units of commercial fertilizer = \$130.15 per acre
- Commercial vs Manure cost: \$130.15 \$84.23 = \$45.92 per acre Manure Advantage or on 237 acres = \$10,883



EncircaSM services are provided subject to terms and conditions of purchase which are part of the labeling and purchase documents. ^{*}, TM, SM Trademarks and service marks of DuPont, Pioneer or their respective owners. © 2015 PHI.


ARE YOU CURIOUS TO KNOW WHERE YOU STAND?

FOUR KEY INPUTS HELP ADVANTAGE THE ENCIRCA SERVICES NITROGEN MODEL



EVOLVE.

NITROGEN LEVELS BY DECISION ZONE

EVOLVE.

SIMULATE NITROGEN LEVELS THROUGHOUT GROWING SEASON

EVOLVE.

Manure and Encirca

- Weather to predict organic manure being available
- Ability to track manure source by field
- Manage manure variability within Encirca
- Nitrogen available and loss based on weather and application method
 - Swine: 1st Yr 30-35%, 2nd Yr 5-10%, 3rd Yr 0-5%
 - Beef: 1st Yr 35-55%, 2nd Yr 10-15%, 3rd Yr 5-15%
 - Poultry: 1st Yr 40-55%, 2nd Yr 10-15%, 3rd Yr 0-10%

	New	Manure Source	
Source Name:	Swine		
Nutrient Type:	Swine: Slurry	/ storage, dry feeders	\checkmark
NH4-N†:	27.4	P2O5† :	14.9
Organic N ⁺ :	10.5	K20 [†] :	19.9
Dry Matter %:	6.1	Organic N 1 st Year % :	35
Comments:			
	1 Values are g	ensured in pounds pay 1000 college	
	Values are n	neasured in pounds per 1000 gallons.	Save Cance

	Application Parameters			
Date: *	04/01/2015			
Product: *	Manure 🔽			
Source: *	Swine 🗸			
Method: *	Direct Injection			
Rate: *	4250 (Gallons) Inhibitors:			
Available N:	110.6275 lb/ac			
Organic N:	15.61875 lb/ac			
Application Completed				
Comments:				
* Required Field				
	Cancel Apply			

* Values based on ASAE- March 2005 Source

Summary

Benefits of using manure

- Increased Cation Exchange Capacity (Soil)
- Lower Bulk Density (Soil)
- Builds soil Organic Matter
- Economics

Benefits of Encirca Nitrogen Management service

- Provides real-time field-level Nitrogen status
- Predicts future Nitrogen status at critical growth stages
- Includes estimated organic matter mineralization